

(12) United States Patent

Xiang et al.

(10) Patent No.:

US 9,202,480 B2

(45) Date of Patent:

Dec. 1, 2015

(54) DOUBLE PATTERNING HARD MASK FOR DAMASCENE PERPENDICULAR MAGNETIC RECORDING (PMR) WRITER

(75) Inventors: **Xiaohai Xiang**, Danville, CA (US);

Yun-Fei Li, Fremont, CA (US); Jinqiu Zhang, Fremont, CA (US); Hongping Yuan, Fremont, CA (US); Xianzhong Zeng, Fremont, CA (US); Hai Sun,

Milpitas, CA (US)

(73) Assignee: Western Digital (Fremont), LLC.,

Fremont, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1107 days.

(21) Appl. No.: 12/579,316

(22)Filed: Oct. 14, 2009

(65)**Prior Publication Data**

US 2011/0086240 A1 Apr. 14, 2011

(51) Int. Cl. B44C 1/22 (2006.01)(2006.01) C03C 15/00 H01L 21/4763 (2006.01)G11B 5/31 (2006.01)G11B 5/127 (2006.01)

(52) U.S. Cl.

CPC G11B 5/3116 (2013.01); G11B 5/1278 (2013.01); G11B 5/3163 (2013.01); Y10T 428/11 (2015.01)

(58) Field of Classification Search

CPC .. G11B 5/1278; G11B 5/3116; G11B 5/3163; Y10T 428/11

USPC 57/22; 216/22, 41, 58, 67; 428/810; 438/637, 712; 29/603.16, 603.01, 29/603.13, 603.15, 603.18; 360/125.03, 360/125.06, 313

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

6.016.290 A	1/2000	Chen et al.				
6,018,441 A	1/2000	Wu et al.				
6,025,978 A	2/2000	Hoshi et al.				
6,025,988 A	2/2000	Yan				
6,032,353 A	3/2000	Hiner et al.				
6,033,532 A	3/2000	Minami				
	(Continued)					

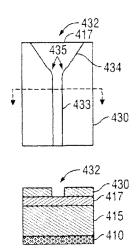
FOREIGN PATENT DOCUMENTS

CN1177169 A 3/1998 OTHER PUBLICATIONS

Xianzhong Zeng, et al., U.S. Appl. No. 13/898,160, filed May 20, 2013, 12 pages

Jinqiu Zhang, et al., U.S. Appl. No. 13/929,705, filed Jun. 27, 2013, 17 pages.

Jinqiu Zhang, et al., U.S. Appl. No. 14/046,790, filed Oct. 4, 2013, 26


(Continued)

Primary Examiner — Nadine Norton Assistant Examiner — Christopher Remavege

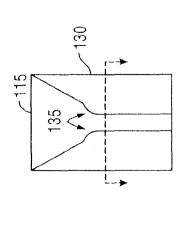
ABSTRACT

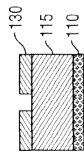
Various embodiments of the subject disclosure provide a double patterning process that uses two patterning steps to produce a write structure having a nose shape with sharp corners. In one embodiment, a method for forming a write structure on a multi-layer structure comprising a substrate and an insulator layer on the substrate is provided. The method comprises forming a hard mask layer over the insulator layer, performing a first patterning process to form a pole and yoke opening in the hard mask layer, performing a second patterning process to remove rounded corners of the pole and voke opening in the hard mask layer, removing a portion of the insulator layer corresponding to the pole and yoke opening in the hard mask layer to form a trench in the insulator layer, and filling the trench with a magnetic material.

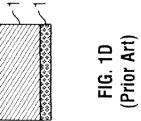
7 Claims, 10 Drawing Sheets

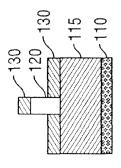
US 9,202,480 B2 Page 2

(56)		Referen	ices Cited	6,351,355			Min et al.
	ЦS	PATENT	DOCUMENTS	6,353,318 6,353,511		3/2002	Sin et al. Shi et al.
	0.5.	171111111	DOCUMENTS	6,356,412	В1	3/2002	Levi et al.
	034,851 A		Zarouri et al.	6,359,779 6,369,983			Frank, Jr. et al.
	043,959 A 046,885 A		Crue et al. Aimonetti et al.	6,376,964		4/2002 4/2002	Young et al.
	040,885 A 049,650 A		Jerman et al.	6,377,535			Chen et al.
	055,138 A	4/2000		6,381,095		4/2002	
	058,094 A		Davis et al.	6,381,105 6,389,499			Huai et al. Frank, Jr. et al.
	073,338 A 078,479 A		Liu et al. Nepela et al.	6,392,850			Tong et al.
	081,499 A		Berger et al.	6,396,660			Jensen et al.
	094,803 A		Carlson et al.	6,399,179 6,400,526			Hanrahan et al. Crue, Jr. et al.
	099,362 A 103,073 A		Viches et al. Thayamballi	6,404,600		6/2002	Hawwa et al.
	108,166 A	8/2000	Lederman	6,404,601			Rottmayer et al.
	118,629 A		Huai et al.	6,404,706 6,410,170			Stovall et al. Chen et al.
	118,638 A 125,018 A		Knapp et al. Takagishi et al.	6,411,522			Frank, Jr. et al.
	130,779 A		Carlson et al.	6,417,998			Crue, Jr. et al.
	134,089 A		Barr et al.	6,417,999 6,418,000			Knapp et al. Gibbons et al.
	136,166 A 137,661 A		Shen et al. Shi et al.	6,418,048			Sin et al.
	137,662 A		Huai et al.	6,421,211			Hawwa et al.
	160,684 A		Heist et al.	6,421,212 6,424,505			Gibbons et al. Lam et al.
	163,426 A 166,891 A		Nepela et al. Lederman et al.	6,424,507			Lederman et al.
	173,486 B1		Hsiao et al.	6,430,009	В1		Komaki et al.
	175,476 B1		Huai et al.	6,430,806 6,433,965			Chen et al. Gopinathan et al.
,	178,066 B1 178,070 B1	1/2001	Barr Hong et al.	6,433,968		8/2002	
	178,070 B1	1/2001		6,433,970	В1	8/2002	Knapp et al.
6,	181,485 B1	1/2001		6,437,945 6,445,536			Hawwa et al. Rudy et al.
	181,525 B1 185,051 B1		Carlson Chen et al.	6,445,542			Levi et al.
	185,077 B1		Tong et al.	6,445,553	B2	9/2002	Barr et al.
6,	185,081 B1	2/2001	Simion et al.	6,445,554			Dong et al.
	188,549 B1		Wiitala Shi et al.	6,447,935 6,448,765			Zhang et al. Chen et al.
	190,764 B1 193,584 B1		Rudy et al.	6,451,514	В1	9/2002	Iitsuka
6,	195,229 B1	2/2001	Shen et al.	6,452,742			Crue et al.
6,	198,608 B1		Hong et al.	6,452,765 6,456,465			Mahvan et al. Louis et al.
	198,609 B1 201,673 B1		Barr et al. Rottmayer et al.	6,459,552			Liu et al.
6,	204,998 B1	3/2001	Katz	6,462,920		10/2002	
	204,999 B1		Crue et al. Chen et al.	6,466,401 6,466,402			Hong et al. Crue, Jr. et al.
	212,153 B1 215,625 B1		Carlson	6,466,404			Crue, Jr. et al.
	219,205 B1	4/2001	Yuan et al.	6,468,436			Shi et al.
	221,218 B1	4/2001		6,469,877 6,477,019			Knapp et al. Matono et al.
	222,707 B1 229,782 B1		Huai et al. Wang et al.	6,479,096	В1	11/2002	Shi et al.
6,	230,959 B1	5/2001	Heist et al.	6,483,662			Thomas et al.
	233,116 B1		Chen et al.	6,487,040 6,487,056			Hsiao et al. Gibbons et al.
	233,125 B1 237,215 B1		Knapp et al. Hunsaker et al.	6,490,125		12/2002	
6,	252,743 B1	6/2001	Bozorgi	6,496,330			Crue, Jr. et al.
	255,721 B1		Roberts	6,496,334 6,504,676			Pang et al. Hiner et al.
	258,468 B1 266,216 B1		Mahvan et al. Hikami et al.	6,512,657		1/2003	Heist et al.
6,	271,604 B1	8/2001	Frank, Jr. et al.	6,512,659			Hawwa et al.
	275,354 B1		Huai et al.	6,512,661 6,512,690		1/2003	Qi et al.
	277,505 B1 282,056 B1		Shi et al. Feng et al.	6,515,573	B1		Dong et al.
	296,955 B1		Hossain et al.	6,515,791			Hawwa et al.
	297,955 B1		Frank, Jr. et al.	6,532,823 6,535,363			Knapp et al. Hosomi et al.
	304,414 B1 307,715 B1		Crue, Jr. et al. Berding et al.	6,552,874	В1	4/2003	Chen et al.
6,	310,746 B1	10/2001	Hawwa et al.	6,552,928			Qi et al.
	310,750 B1		Hawwa et al.	6,577,470 6,583,961			Rumpler Levi et al.
	317,290 B1 317,297 B1		Wang et al. Tong et al.	6,583,968			Scura et al.
	322,911 B1		Fukagawa et al.	6,597,548	В1		Yamanaka et al.
	330,136 B1	12/2001	Wang et al.	6,611,398			Rumpler et al.
,	330,137 B1		Knapp et al.	6,618,223 6,629,357		9/2003 10/2003	Chen et al.
	333,830 B2 340,533 B1		Rose et al. Ueno et al.	6,633,464			Lai et al.
	349,014 B1		Crue, Jr. et al.	6,636,394			Fukagawa et al.

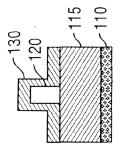

US 9,202,480 B2 Page 3

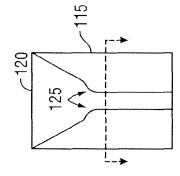

(56)	Reference	es Cited	6,940,688			Jiang et al.
U.S.	. PATENT I	OOCUMENTS	6,942,824 6,943,993	B2	9/2005 9/2005	Chang et al.
C (20 201 D1	10/2002	C' t - 1	6,944,938 6,947,258		9/2005 9/2005	Crue, Jr. et al.
6,639,291 B1 6,650,503 B1	10/2003 11/2003	Sin et al. Chen et al.	6,950,266			McCaslin et al.
6,650,506 B1	11/2003	Risse	6,954,332			Hong et al.
6,654,195 B1 6,657,816 B1	11/2003 12/2003	Frank, Jr. et al.	6,958,885 6,961,221			Chen et al. Niu et al.
6,661,621 B1	12/2003		6,969,989	B1	11/2005	Mei
6,661,625 B1	12/2003		6,975,486 6,987,643		12/2005 1/2006	Chen et al.
6,674,610 B1 6,680,863 B1	1/2004	Thomas et al. Shi et al	6,989,962			Dong et al.
6,683,763 B1		Hiner et al.	6,989,972			Stoev et al.
6,687,098 B1	2/2004		7,006,327 7,007,372			Krounbi et al. Chen et al.
6,687,178 B1 6,687,977 B2	2/2004 2/2004	Knapp et al.	7,012,832	B1	3/2006	Sin et al.
6,691,226 B1	2/2004	Frank, Jr. et al.	7,023,658 7,026,063			Knapp et al. Ueno et al.
6,697,294 B1 6,700,738 B1	2/2004 3/2004		7,020,003			Zhu et al.
6,700,759 B1		Knapp et al.	7,027,274	B1		Sin et al.
6,704,158 B2	3/2004	Hawwa et al.	7,035,046 7,041,985			Young et al. Wang et al.
6,707,083 B1 6,713,801 B1	3/2004	Hiner et al. Sin et al.	7,046,490			Ueno et al.
6,721,138 B1	4/2004	Chen et al.	7,054,113			Seagle et al.
6,721,149 B1 6,721,203 B1	4/2004 4/2004		7,057,857 7,059,868		6/2006	Niu et al. Yan
6,724,569 B1		Chen et al.	7,092,195	B1	8/2006	Liu et al.
6,724,572 B1		Stoev et al.	7,110,289 7,111,382			Sin et al. Knapp et al.
6,729,015 B2 6,735,850 B1		Matono et al. Gibbons et al.	7,111,362			Wang et al.
6,737,281 B1	5/2004	Dang et al.	7,114,241			Kubota et al.
6,744,608 B1	6/2004	Sin et al. Hiner et al.	7,116,517 7,124,654		10/2006 10/2006	Davies et al.
6,747,301 B1 6,751,055 B1		Alfoqaha et al.	7,126,788	B1	10/2006	Liu et al.
6,754,049 B1		Seagle et al.	7,126,790 7,131,346			Liu et al. Buttar et al.
6,756,071 B1 6,757,140 B1	6/2004 6/2004		7,131,340			Seagle et al.
6,760,196 B1	7/2004	Niu et al.	7,134,185			Knapp et al.
6,762,910 B1 6,765,756 B1		Knapp et al. Hong et al.	7,154,715 7,170,725			Yamanaka et al. Zhou et al.
6,775,902 B1		Huai et al.	7,177,117	B1	2/2007	Jiang et al.
6,778,358 B1	8/2004 .	Jiang et al.	7,193,815 7,196,880		3/2007	Stoev et al. Anderson et al.
6,781,927 B1 6,785,955 B1		Heanuc et al. Chen et al.	7,190,880			Alfoqaha
6,791,793 B1	9/2004	Chen et al.	7,199,975		4/2007	
6,791,807 B1 6,798,616 B1		Hikami et al.	7,211,339 7,212,384		5/2007 5/2007	Seagle et al. Stoev et al.
6,798,616 B1		Seagle et al. Ueno et al.	7,238,292	B1	7/2007	He et al.
6,801,408 B1		Chen et al.	7,239,478 7,248,431		7/2007	Sin et al. Liu et al.
6,801,411 B1 6,803,615 B1	10/2004	Lederman et al. Sin et al.	7,248,433		7/2007	
6,806,035 B1	10/2004	Atireklapvarodom et al.	7,248,449		7/2007	
6,807,030 B1 6,807,332 B1	10/2004 10/2004	Hawwa et al.	7,280,325 7,283,327		10/2007 10/2007	Liu et al.
6,809,899 B1		Chen et al.	7,284,316	B1	10/2007	Huai et al.
6,816,345 B1		Knapp et al.	7,286,329 7,289,303			Chen et al. Sin et al.
6,828,897 B1 6,829,160 B1	12/2004 1 12/2004		7,292,409			Stoev et al.
6,829,819 B1	12/2004	Ĉrue, Jr. et al.	7,296,339			Yang et al. Seagle et al.
6,833,979 B1 6,834,010 B1	12/2004 12/2004	Knapp et al.	7,307,814 7,307,818		12/2007 12/2007	Park et al.
6,859,343 B1		Alfoqaha et al.	7,310,204	B1	12/2007	Stoev et al.
6,859,997 B1		Tong et al.	7,318,947 7,333,295			Park et al. Medina et al.
6,861,937 B1 6,870,712 B2		Feng et al. Chen et al.	7,337,530		3/2008	Stoev et al.
6,873,494 B2	3/2005	Chen et al.	7,342,752			Zhang et al. Rudman et al.
6,873,547 B1 6,879,464 B2	3/2005 4/2005	Shi et al. Sun et al.	7,349,170 7,349,179			He et al.
6,888,184 B1	5/2005		7,354,664	B1	4/2008	Jiang et al.
6,888,704 B1	5/2005	Diao et al.	7,363,697			Dunn et al.
6,891,702 B1 6,894,871 B2	5/2005 1 5/2005	Tang Alfoqaha et al.	7,371,152 7,372,665			Newman Stoev et al.
6,894,877 B1		Crue, Jr. et al.	7,375,926	В1	5/2008	Stoev et al.
6,906,894 B2		Chen et al.	7,379,269			Krounbi et al.
6,909,578 B1 6,912,106 B1		Missell et al. Chen et al.	7,386,933 7,389,577		6/2008 6/2008	Krounbi et al. Shang et al.
6,934,113 B1	8/2005	Chen	7,417,832	B1		Erickson et al.
6,934,129 B1	8/2005	Zhang et al.	7,419,891	В1	9/2008	Chen et al.


US 9,202,480 B2 Page 4


(56)			Referen	ces Cited	8,151,441 B		Rudy et al.
		U.S. I	PATENT	DOCUMENTS	8,163,185 B 8,164,760 B	2 4/2012	Sun et al. Willis
					8,164,855 B		
	,428,124			Song et al.	8,164,864 B 8,165,709 B		Kaiser et al.
	,430,098			Song et al. Kang et al.	8,166,631 B		Tran et al.
	,436,638		10/2008		8,166,632 B		Zhang et al.
	,440,220			Kang et al.	8,169,473 B 8,171,618 B		Yu et al. Wang et al.
	,443,632			Stoev et al	8,179,636 B		Bai et al.
	,493,688			Wang et al.	8,191,237 B		Luo et al.
	,508,627			Zhang et al.	8,194,365 B 8,194,366 B		Leng et al. Li et al.
	,522,377 ,522,379			Jiang et al. Krounbi et al.	8,196,285 B	1 6/2012	Zhang et al.
	,522,382		4/2009		8,200,054 B	1 6/2012	Li et al.
	,542,246			Song et al.	8,203,800 B 8,208,350 B		Li et al. Hu et al.
	,551,406 ,552,523			Thomas et al. He et al.	8,220,140 B		Wang et al.
7.	,554,767	B1	6/2009	Hu et al.	8,222,599 B		
	,583,466			Kermiche et al. Moon et al.	8,225,488 B 8,227,023 B		Zhang et al. Liu et al.
	,595,967 ,639,457			Chen et al.	8,228,633 B	1 7/2012	Tran et al.
7.	,660,080	B1	2/2010	Liu et al.	8,231,796 B		Li et al.
	,672,080 ,672,086		3/2010 3/2010	Tang et al.	8,233,248 B 8,248,896 B		Li et al. Yuan et al.
	,684,160			Erickson et al.	8,254,060 B	1 8/2012	Shi et al.
7.	,688,546	B1		Bai et al.	8,257,597 B		Guan et al. Bai et al.
	,691,434			Zhang et al. Shen et al.	8,259,410 B 8,259,539 B		Hu et al.
	,719,795			Hu et al.	8,262,918 B	1 9/2012	Li et al.
7.	,726,009	B1	6/2010	Liu et al.	8,262,919 B		Luo et al.
	,729,086 ,729,087			Song et al. Stoev et al.	8,264,797 B 8,264,798 B		
	,736,823			Wang et al.	8,270,126 B	1 9/2012	Roy et al.
	,785,666			Sun et al.	8,276,258 B 8,277,669 B		Tran et al. Chen et al.
	,796,356 ,800,858			Fowler et al. Bajikar et al.	8,279,719 B		Hu et al.
	,819,979			Chen et al.	8,284,517 B	1 10/2012	
	,829,264			Wang et al.	8,288,204 B 8,289,821 B		Wang et al.
	,846,643		12/2010	Sun et al. Hu et al	8,291,743 B		Shi et al.
	,869,160			Pan et al.	8,307,539 B		Rudy et al.
	,872,824			Macchioni et al.	8,307,540 B 8,308,921 B		Tran et al. Hiner et al.
	,872,833 ,910,267			Hu et al. Zeng et al.	8,310,785 B		Zhang et al.
	,911,735		3/2011	Sin et al.	8,310,901 B		Batra et al.
	,911,737			Jiang et al. Hu et al.	8,315,019 B 8,316,527 B		Mao et al. Hong et al.
	,916,426 ,918,013			Dunn et al.	8,320,076 B	1 11/2012	Shen et al.
7.	,968,219	B1	6/2011	Jiang et al.	8,320,077 B		Tang et al.
	,982,989		7/2011 8/2011	Shi et al.	8,320,219 B 8,320,220 B		Wolf et al. Yuan et al.
	,012,804			Wang et al.	8,320,722 B	1 11/2012	Yuan et al.
8.	,015,692	B1	9/2011	Zhang et al.	8,322,022 B 8,322,023 B		Yi et al. Zeng et al.
	,018,677 ,018,678			Chung et al. Zhang et al.	8,325,569 B		
	,018,078			Moravec et al.	8,333,008 B	1 12/2012	Sin et al.
	,072,705			Wang et al.	8,334,093 B 8,336,194 B		Zhang et al. Yuan et al.
	,074,345		12/2011	Anguelouch et al.	8,339,738 B		
	,077,434			Shen et al.	8,341,826 B		Jiang et al.
	,077,435			Liu et al.	8,343,319 B 8,343,364 B		Li et al. Gao et al.
	,077,557			Hu et al. Shen et al.	8,349,195 B	1 1/2013	Si et al.
	,081,403		12/2011	Chen et al.	8,351,307 B		
	,091,210			Sasaki et al.	8,357,244 B 8,373,945 B		Zhao et al. Luo et al.
	,097,846			Anguelouch et al. Zhang et al.	8,375,564 B	1 2/2013	Luo et al.
8,	,116,043	B2	2/2012	Leng et al.	8,375,565 B		Hu et al.
8,	,116,171 ,125,856	B1	2/2012	Lee Li et al.	8,381,391 B 8,385,157 B		Park et al. Champion et al.
	,125,856		3/2012		8,385,157 B		Hu et al.
8,	,136,224	B1	3/2012	Sun et al.	8,394,280 B	1 3/2013	Wan et al.
	,136,225			Zhang et al.	8,400,731 B		Li et al.
	,136,805		3/2012 3/2012		8,404,128 B 8,404,129 B		Zhang et al. Luo et al.
	,146,236			Luo et al.	8,405,930 B	1 3/2013	Li et al.
	,149,536		4/2012	Yang et al.	8,409,453 B	1 4/2013	Jiang et al.

(56)	References Cited					8,619,512 B1		Yuan et al.
		us i	PATENT	DOCUMENTS		8,625,233 B1 8,625,941 B1		Ji et al. Shi et al.
		0.0.1	11111111	DOCOMENTO		8,628,672 B1		Si et al.
	8,413,317	В1	4/2013	Wan et al.		8,630,068 B1		Mauri et al.
	8,416,540	B1		Li et al.		8,634,280 B1		Wang et al.
	8,419,953	B1		Su et al.		8,638,529 B1		Leng et al.
	8,419,954			Chen et al.		8,643,980 B1 8,649,123 B1		Fowler et al. Zhang et al.
	8,422,176			Leng et al.		8,665,561 B1		Knutson et al.
	8,422,342 8,422,841		4/2013	Shi et al.		8,670,211 B1		Sun et al.
	8,424,192			Yang et al.		8,670,213 B1		Zeng et al.
	8,441,756			Sun et al.		8,670,214 B1		Knutson et al.
	8,443,510		5/2013	Shi et al.		8,670,294 B1		Shi et al.
	8,444,866			Guan et al.		8,670,295 B1 8,675,318 B1		Hu et al. Ho et al.
	8,449,948			Medina et al.		8,675,455 B1		Krichevsky et al.
	8,451,556 8,451,563			Wang et al. Zhang et al.		8,681,594 B1		Shi et al.
	8,454,846			Zhang et al. Zhou et al.		8,689,430 B1		Chen et al.
	8,455,119			Jiang et al.		8,693,141 B1		Elliott et al.
	8,456,961			Wang et al.		8,703,397 B1		Zeng et al.
	8,456,963			Hu et al.		8,705,205 B1 8,711,518 B1		Li et al. Zeng et al.
	8,456,964			Yuan et al.		8,711,518 B1 8,711,528 B1		Xiao et al.
	8,456,966 8,456,967			Shi et al. Mallary		8,717,709 B1		Shi et al.
	8,458,892			Si et al.		8,720,044 B1		Tran et al.
	8,462,592			Wolf et al.		8,721,902 B1		Wang et al.
	8,468,682	B1	6/2013			8,724,259 B1		Liu et al.
	8,472,288			Wolf et al.		8,749,790 B1 8,749,920 B1		Tanner et al. Knutson et al.
	8,480,911			Osugi et al.		8,753,903 B1		Tanner et al.
	8,486,285 8,486,286			Zhou et al. Gao et al.		8,760,807 B1		Zhang et al.
	8,488,272			Tran et al.		8,760,818 B1		Diao et al.
	8,491,801			Tanner et al.		8,760,819 B1		Liu et al.
	8,491,802			Gao et al.		8,760,822 B1		Li et al.
	8,493,693			Zheng et al		8,760,823 B1 8,763,235 B1		Chen et al. Wang et al.
	8,493,695 8,495,813			Kaiser et al. Hu et al.		8,780,498 B1		Jiang et al.
	8,498,084			Leng et al.		8,780,505 B1	7/2014	
	8,506,828			Osugi et al.		8,786,983 B1		Liu et al.
	8,514,517			Batra et al.		8,790,524 B1		Luo et al.
	8,518,279			Wang et al.		8,790,527 B1 8,792,208 B1		Luo et al. Liu et al.
	8,518,832 8,520,336			Yang et al. Liu et al.		8,792,312 B1		Wang et al.
	8,520,337			Liu et al.		8,793,866 B1		Zhang et al.
	8,524,068			Medina et al.		8,797,680 B1		Luo et al.
	8,526,275			Yuan et al.		8,797,684 B1		Tran et al. Bai et al.
	8,531,801	Bl		Xiao et al.		8,797,686 B1 8,797,692 B1		Guo et al.
	8,532,450 8,533,937			Wang et al. Wang et al.		8,813,324 B2	8/2014	Emley et al.
	8,537,494			Pan et al.		2006/0002021 A1		Li et al 360/126
	8,537,495			Luo et al.		2006/0225268 A1		Le et al 29/603.14
	8,537,502			Park et al.		2007/0014048 A1 2007/0279802 A1		Sasaki et al.
	8,545,999			Leng et al.		2008/0081461 A1		Lee et al.
	8,547,659 8,547,667			Bai et al. Roy et al.		2008/0090418 A1		Jeon et al.
	8,547,730			Shen et al.		2008/0316644 A1		Lee et al.
	8,555,486			Medina et al.		2010/0290157 A1		Zhang et al.
	8,559,141			Pakala et al.		2011/0051293 A1 2011/0086240 A1		Bai et al 360/313 Xiang et al.
	8,563,146			Zhang et al. Tanner et al.		2012/0111826 A1		Chen et al.
	8,565,049 8,576,517			Tran et al.		2012/0216378 A1		Emley et al.
	8,578,594			Jiang et al.		2012/0237878 A1		Zeng et al.
	8,582,238	B1		Liu et al.		2012/0298621 A1	11/2012	
	8,582,241		11/2013			2013/0216702 A1 2013/0216863 A1		Kaiser et al. Li et al.
	8,582,253			Zheng et al.		2013/0257421 A1		Shang et al.
	8,588,039 8,593,914		11/2013	Wang et al.		2014/0154529 A1		Yang et al.
	8,597,528			Roy et al.		2014/0175050 A1	6/2014	Zhang et al.
	8,599,520	B1	12/2013	Liu et al.				
	8,599,657		12/2013			C	THER PU	BLICATIONS
	8,603,593 8,607,438			Roy et al. Gao et al.				5, 2014 from related Chinese Appli-
	8,607,438			Wang et al.		cation Serial No. 20		
	8,611,035	B1		Bajikar et al.				4, 2015 from related Chinese Appli-
	8,611,054	B1	12/2013	Shang et al.		cation Serial No. 20	1010511811	.X, 13 pages.
	8,611,055			Pakala et al.		* cited by examine	ar.	
	8,614,864	DI	12/2013	Hong et al.		ched by examine	C1	





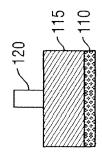
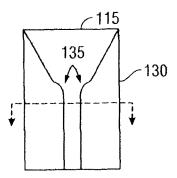



FIG. 1A (Prior Art)

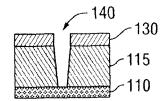
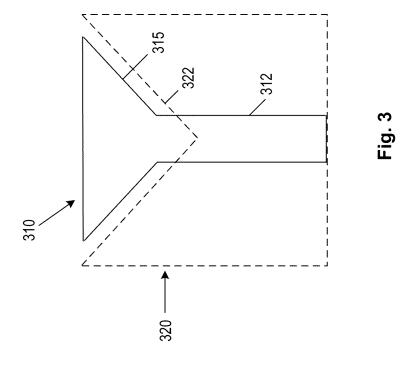
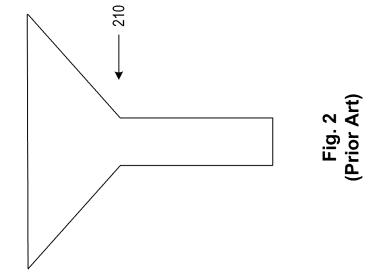
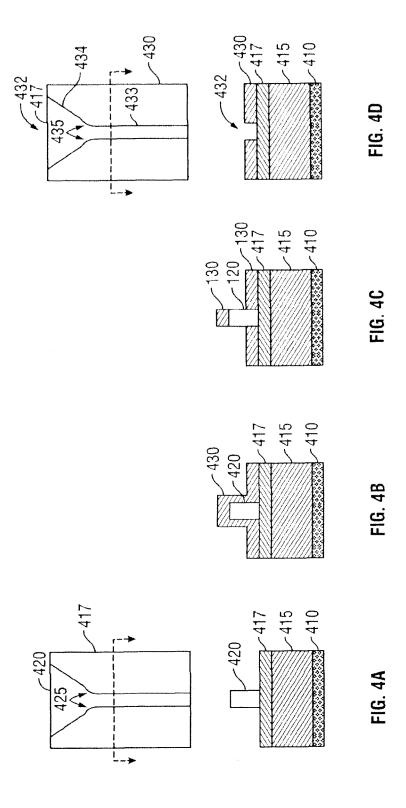
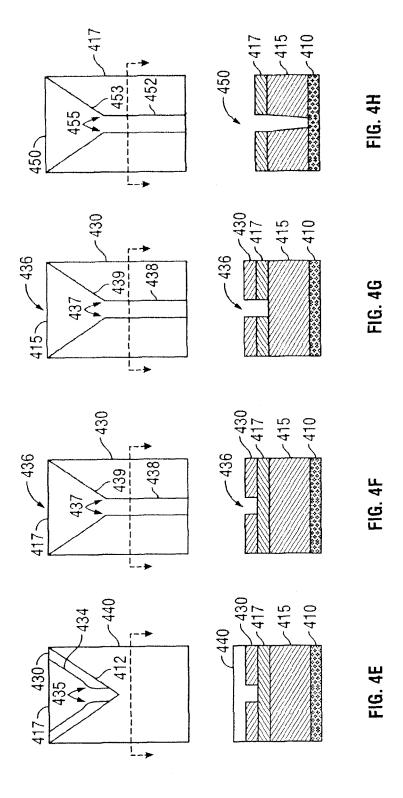






FIG. 1E (Prior Art)

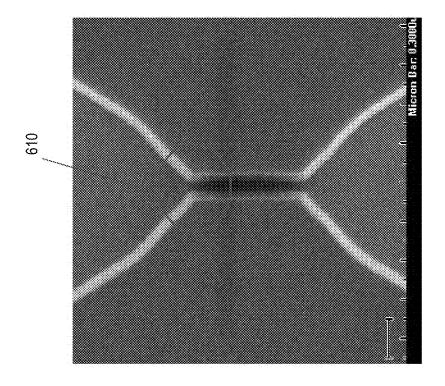


Fig. 6

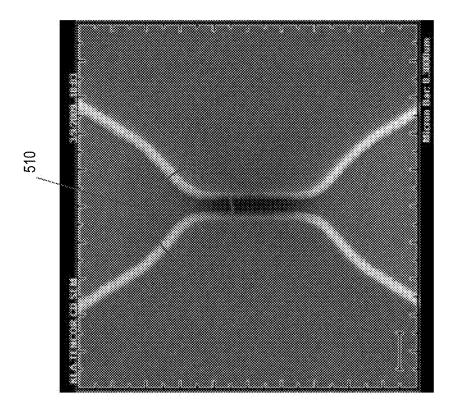


Fig. 5

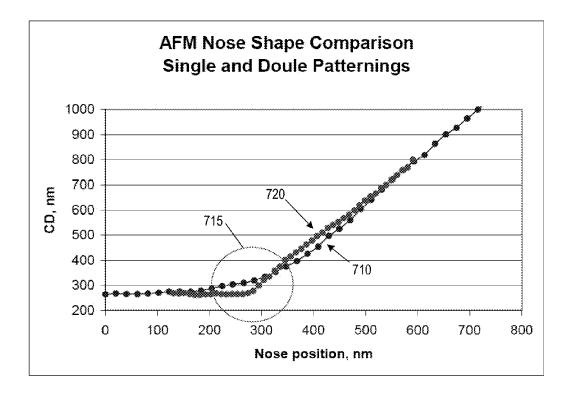


Fig. 7

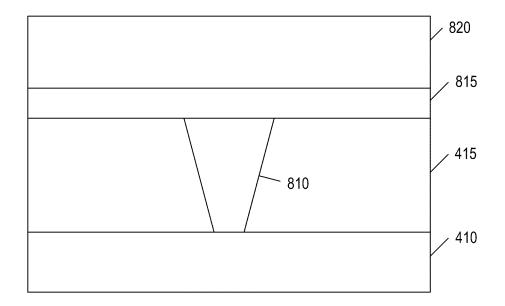


Fig. 8

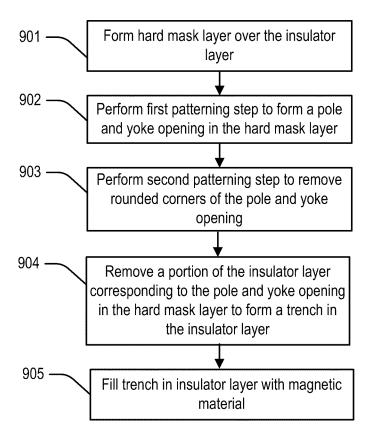


Fig. 9

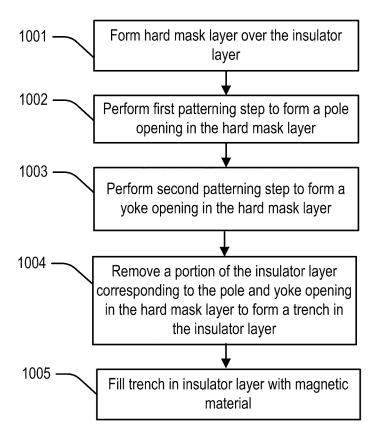


Fig. 10

DOUBLE PATTERNING HARD MASK FOR DAMASCENE PERPENDICULAR MAGNETIC RECORDING (PMR) WRITER

FIELD OF THE INVENTION

The present invention generally relates to hard disk drives and, in particular, relates to fabrication of perpendicular magnetic recording (PMR) writers.

BACKGROUND OF THE INVENTION

Magnetic disk drives are used to store and retrieve data for digital electronic apparatuses such as computers. One example of a disk drive is a hard disk drive. A conventional hard disk drive includes a rotating magnetic disk, write and read heads that are suspended by a suspension arm adjacent to a surface of the rotating magnetic disk, and an actuator that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The read and write heads are directly located on a slider that has an air bearing surface (ABS). The suspension arm biases the slider towards the surface of the disk, and when the disk rotates, air adjacent to the disk moves along with the surface of the disk. 25 The slider flies over the surface of the disk on a cushion of the moving air.

When the slider rides on the air bearing, the write and read heads are employed for writing magnetic transitions to and reading magnetic transitions from the rotating disk. The read 30 and write heads are connected to processing circuitry that operates according to a program to implement writing and reading functions.

Perpendicular magnetic recording (PMR) writers are now being utilized in write heads to increase the data density of 35 hard disk drives. Such PMR writers record magnetic bits of data in a direction that is perpendicular to the surface of the magnetic disk. A PMR writer generally includes a write pole having a relatively small cross sectional surface at the air bearing surface (ABS) and a return pole having a larger cross 40 sectional surface at the ABS. A magnetic write coil induces a magnetic flux to be emitted from the write pole in a direction generally perpendicular to the plane of the magnetic disk.

Traditionally, a PMR write pole is defined and fabricated using one-step photolithography and a subsequent reactive 45 ion etch or ion-mill. FIGS. 1A-1E show a conventional PMR fabrication process using one-step photolithography.

FIG. 1A shows a top view and a cross-sectional view of a multi-layer structure comprising a substrate 110, an insulator layer 115 and a photoresist layer 120. The photoresist layer 50 120 is patterned to form a nose pattern in the photoresist layer 120 using one-step photolithography with one photo mask 210 (shown in FIG. 2A). The nose pattern comprises a pole pattern and a yoke pattern that tapers downward to the pole pattern. Due to the optical proximity effect, the corners 125 of 55 the nose pattern are rounded, as shown in the top view in FIG. 1A

In FIG. 1B, a ruthenium (Ru) layer 130 is deposited over the photoresist layer 120. In FIG. 1C, the Ru layer 130 on the sides of the photoresist layer 120 is removed using side milling. In FIG. 1D, the photoresist layer 120 and the Ru 130 layer on the top of the photoresist layer 120 are lifted off to transfer the nose pattern from the photoresist layer 120 to the Ru layer 130. As shown in the top view in FIG. 1D, the nose pattern transferred to the Ru layer 130 includes rounded corners 135 corresponding to the rounded corners 125 in the photoresist layer 120.

2

In FIG. 1E, the patterned layer Ru 130 is used as a hard mask for a reactive ion etch (RIE) to form a trench 140 in the insulator layer 115. The trench 140 includes a yoke trench and a pole trench. In a subsequent step, the trench 140 in the insulator layer 115 is filled with a magnetic material (not shown). The magnetic material in the pole trench forms a write pole.

In a later process, a portion of the write pole is lapped off to form a cross sectional surface at the ABS that faces the magnetic disk and though which magnetic flux flows from the write pole to the magnetic disk for writing data to the magnetic disk. The write pole is lapped along a plane that is perpendicular to the top view in FIG. 1E.

New generation PMR writers require very short nose lengths with no nose shape rounding and zero chisel angle at ABS to ensure high write performance and to reduce variations in write performance from device to device. Conventional PMR fabrication processes are unable to meet this require because of nose shape rounding due to the optical proximity effect.

SUMMARY OF THE INVENTION

Various embodiments of the subject disclosure solve the foregoing problems by providing a double patterning process that uses two patterning steps to produce a nose shape with sharp corners.

According to one embodiment of the subject disclosure, a method for forming a write structure on a multi-layer structure comprising a substrate and an insulator layer on the substrate is provided. The method comprises forming a hard mask layer over the insulator layer, performing a first patterning process to form a pole and yoke opening in the hard mask layer, performing a second patterning process to remove rounded corners of the pole and yoke opening in the hard mask layer, removing a portion of the insulator layer corresponding to the pole and yoke opening in the hard mask layer to form a trench in the insulator layer, and filling the trench with a magnetic material.

According to another embodiment of the subject disclosure, a method for forming a write structure on a multi-layer structure comprising a substrate and an insulator layer on the substrate is provided. The method comprises forming a hard mask layer over the insulator layer, performing a first patterning process to form a pole opening in the hard mask layer, performing a second patterning process to form a yoke opening in the hard mask layer, the yoke opening overlapping the pole opening, removing a portion of the insulator layer corresponding to the pole opening and the yoke opening in the hard mask layer to form a trench in the insulator layer, and filling the trench with a magnetic material.

It is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:

FIG. 1A-1E illustrate a conventional PMR fabrication pro-

FIG. 2 illustrates a photo mask used in one-step photolithography in the conventional PMR fabrication process;

FIG. 3 illustrates two photo masks used in a double patterning PMR fabrication process according to an aspect of the subject disclosure;

FIGS. 4A-4H illustrate a double patterning PMR fabrication process according to an aspect of the subject disclosure;

FIG. 5 shows a top-down critical dimension scanning electron microscope (CDSEM) image of a nose shape after trench formation for a conventional PMR fabrication process;

FIG. 6 shows a top-down CDSEM image of a nose shape after trench formation for a double patterning PMR fabrication process according to an aspect of the subject disclosure;

FIG. 7 shows nose shape comparisons between a convention PMR fabrication process and a double patterning PMR ¹⁵ fabrication process according to an aspect of the subject disclosure;

FIG. 8 illustrates a portion of a write head as viewed toward the ABS according to an aspect of the subject disclosure;

FIG. **9** is a flow chart illustrating a double patterning ²⁰ method for forming a write structure according to an aspect of the subject disclosure; and

FIG. 10 is a flow chart illustrating a double patterning method for forming a write structure according to another aspect of the subject disclosure.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description, numerous specific details are set forth to provide a full understanding of the 30 present invention. It will be apparent, however, to one ordinarily skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail to avoid unnecessarily obscuring the 35 present invention.

FIGS. 4A-4H show a double patterning PMR fabrication process for fabricating a write pole according to an aspect of the subject disclosure. The double patterning process uses two photolithography steps with two photo masks to produce 40 a nose shape with sharp corners.

FIG. 4A shows a top view and a cross-sectional view of a multi-layer structure comprising a substrate 410, an insulator layer 415, a first hard mask layer 417, and a first photoresist layer 420. The insulator layer 415 may comprise alumina or 45 other magnetically insulating material. The first hard mask layer 417 may comprise ruthenium (Ru).

The first photoresist layer 420 is patterned using a first photolithography step to form a pole and yoke pattern in the first photoresist layer 420. The first photolithography step 50 uses a first photo mask 310 (shown in FIG. 3) to define the pole and yoke pattern. The pole and yoke pattern comprises a pole pattern 312 and a yoke pattern 315 that tapers downward to the pole pattern 312. The pole and yoke pattern in the first photo mask 310 is transferred from the first photo mask 310 to 55 the photoresist layer 420 during the first photolithography step. However, due to the optical proximity effect, the corners 425 of the yoke and pole pattern in the photoresist layer 420 may be rounded instead of sharp, as shown in the top view in FIG. 4A.

In FIG. 4B, a second hard mask layer 430 is deposited over the first photoresist layer 420 and the first hard mask layer 417. The second hard mask layer 430 may comprise tantalum (Ta). In FIG. 4C, the second hard mask layer 430 on the sides of the first photoresist layer 420 is removed using side milling. In FIG. 1D, the first photoresist layer 420 and the second hard mask layer 430 on the top of the first photoresist layer

4

420 are lifted off to transfer the pole and yoke pattern from the first photoresist layer 420 to the second hard mask layer 430. This forms a corresponding pole and yoke opening 432 in the second hard mask layer 430. The pole and yoke opening 432 includes a pole opening 433 and a yoke opening 434. As shown in the top view in FIG. 1D, the pole and yoke opening 432 may include rounded corners 435 corresponding to the rounded corners 425 in the first photoresist layer 420.

In FIG. 4E, a second photoresist layer 440 is deposited over the second hard mask layer 430 and the insulator layer 415. The second photoresist layer 440 is patterned using a second photolithography step to form a pattern that exposes the rounded corners 435 of the yoke and pole opening 432 in the second hard mask layer 430 and includes a yoke pattern 442 below the yoke opening 434 in the second hard mask layer 430, as shown in the top view in FIG. 4E. The second photolithography step uses a second photo mask 320 (shown with dashed lines in FIG. 3) to define the pattern in the second photoresist layer 440.

FIG. 3 shows both the first and second photo masks 310 and 320 including the relative position of the second photo mask 320 to the first photo mask 310. In FIG. 3, the outline of the second photo mask 320 is dashed to show the overlap between the first and second photo masks 310 and 320. The second photo mask 320 includes a yoke pattern 322 below the yoke pattern 315 of the first photo mask 310.

In FIG. 4F, the portion of the second hard mask layer 430 exposed by the second photoresist layer 440, which includes the rounded corners 435, is removed by a RIE. The second photoresist layer 440 is then stripped away. The RIE etches away the rounded corners 435 in the second hard mask layer 430 and transfers the yoke pattern 442 in the second photoresist layer 440 to the second hard mask layer 430. This results in a pole and yoke opening 436 with sharp corners 437 in the second hard mask layer 430, as shown in the top view in FIG. 4F. The pole and yoke opening 436 in the second hard mask layer 430 comprises a pole opening 438 defined by the first photolithography step using the first photolithography step using the second photolithography step using the second photolithography step using the second photo mask 320.

In FIG. 4G, the first hard mask layer 417 is etched with a RIE using the second hard mask layer 430 as a hard mask for the RIE. During the RIE, a portion of the first hard mask layer 417 exposed by the pole and yoke opening 436 in the second hard mask layer 430 is removed, transferring the pole and yoke opening 436 from the second hard mask layer 430 to the first hard mask layer 417.

In FIG. 4H, the insulator layer 415 is etched with an insulator RIE using the first hard mask layer 417 as a hard mask for the insulator RIE. During the insulator RIE, a portion of the insulator layer 415 exposed by the pole and yoke opening in the first hard mask layer 417 is removed. This forms a trench 450 in the insulator layer 115 having a nose shape with sharp corners 455. The trench 450 includes a pole trench 452 and a yoke trench 453. The insulator RIE also etches away the second hard mask layer 430. In a subsequent step, the trench 450 in the insulator layer 415 is filled with a magnetic material (not shown). The magnetic material in the pole trench 452 forms a write pole, and the magnetic material in the yoke trench 453 forms a write yoke that concentrates magnetic flux induced by magnetic write coils into the write pole.

In a later process, a portion of the write pole is lapped off to form an cross sectional surface ABS that faces the magnetic disk and though which magnetic flux flows from the write pole to the magnetic disk for writing data to the magnetic

disk. The write pole is lapped along a plane that is perpendicular to the top view in FIG. 4H to form the cross sectional surface

Thus, the double patterning PMR fabrication process results in sharp nose corners with substantially no rounding 5 and zero chisel angle at ABS. The double pattering PMR fabrication substantially eliminates the nose corner rounding associated with conventional PMR fabrication processes.

FIG. 5 shows a top-down critical dimension scanning electron microscope (CDSEM) image of the nose shape after RIE trench formation for a conventional PMR fabrication process using one photolithography step. FIG. 6 shows a top-down CDSEM image of the nose shape after RIE trench formation for the double patterning PMR fabrication process. As shown in FIG. 5, the conventional PMR fabrication process results in a nose shape having rounded corners 510. In contrast, as shown in FIG. 6, the double patterning PMR fabrication results in a nose shape having sharp corners 610. Thus, the image in FIG. 6 demonstrates that the double patterning PMR fabrication process substantially eliminates nose corner 20 rounding.

FIG. 7 shows dimensions of a nose shape 710 for the convention fabrication process measured using atomic force microscope (AFM) metrology after trench formation. The measured nose shape 710 for the conventional fabrication 25 process shows nose corner rounding in region 715 with no sharp transition between the yoke and the pole. FIG. 7 also shows dimensions of a nose shape 720 for the double patterning fabrication process measured using AFM metrology after trench formation. The measured nose shape 720 for the 30 double patterning fabrication process shows a sharp corner in region 715, which provides a sharp transition between the yoke and the pole.

The nose corner rounding resulting from the conventional fabrication process causes variations in the width of the pole along the length of the pole. This can be seen in FIG. 7, where the width of the pole varies along the length of the pole, which extends from the left of the nose corner located at approximately 280 nm in FIG. 7. As a result of the pole width variation, the shape of the cross sectional surface of the write 40 pole at the ABS is highly dependent on the position at which the write pole is lapped. In the example in FIG. 7, the shape of the cross sectional surface of the write pole is highly dependent on lapping position within a range of approximately 100 nm from the nose corner. Variations in lapping position 45 among different write poles causes variations in the shape of their cross sectional surfaces, which in turn leads to variations in write performance among the write poles.

In contrast, the nose shape **720** resulting from the double patterning fabrication process exhibits a sharp corner that 50 provides a sharp transition between the yoke and the pole. As a result, the pole is relatively straight along the length of the pole, which extends from the left of the nose corner located at approximately 280 nm in the example in FIG. **7**. Because the pole is relatively straight, the width, and hence the shape of 55 the cross sectional surface of the write pole, is much less dependent on lapping position. The significantly reduced dependence on lapping position, leads to much greater uniformity in the shape of the cross sectional surfaces and write performances among write poles.

FIG. 8 illustrates a portion of a write head as viewed toward the ABS that may be formed by the double patterning PMR fabrication process. The write head may include the substrate 410, the insulator layer 415 (e.g., alumina), a write pole 810, a write gap 815 and a top shield 820. FIG. 8 shows the cross 65 sectional surface of the write pole 810 that faces the magnetic disk. As discussed above, the cross sectional surface of the

6

write pole **810** is defined by lapping the write pole at a distance from the nose corner along a plane perpendicular to the top view shown in FIG. **4**H. To write data to the magnetic disk, magnetic flux is emitted from the cross sectional surface of the write pole **810** in a direction generally perpendicular to the cross sectional surface of the write pole **810** and the surface of the magnetic disk.

FIG. 9 illustrates a method for forming a write structure on a multi-layer structure comprising a substrate and an insulator layer on the substrate according to an aspect of the subject disclosure. The insulator layer may comprise alumina or other magnetically insulating material.

In step 901, a hard mask layer is formed over the insulator layer. The hard mask layer may comprise ruthenium (Ru), tantalum (Ta) or other material. In step 902, a first patterning process is performed to form a pole and yoke opening in the hard mask layer. Due to the optical proximity effect, the pole and yoke opening of the hard mask layer may have rounded corners. In step 903, a second patterning process is performed to remove the rounded corners of the pole and yoke opening in the hard mask layer. In step 904, a portion of the insulator layer corresponding to the pole and yoke opening in the hard mask layer is removed to form a trench in the insulator layer. In step 905, the trench in the insulator layer is filled with a magnetic material.

FIG. 10 illustrates a method for forming a write structure on a multi-layer structure comprising a substrate and an insulator layer on the substrate according to an aspect of the subject disclosure.

In step 1001, a hard mask layer is formed over the insulator layer. The hard mask layer may comprise ruthenium (Ru), tantalum (Ta) or other material. In step 1002, a first patterning process is performed to form a pole opening in the hard mask layer. In step 1003, a second patterning process is performed to form a yoke opening in the hard mask layer, the yoke opening overlapping the pole opening. In step 1004, a portion of the insulator layer corresponding to the pole opening and the yoke opening in the hard mask layer is removed to form a trench in the insulator layer. In step 1005, the trench in the insulator layer is filled with a magnetic material.

The description of the invention is provided to enable any person skilled in the art to practice the various embodiments described herein. While the present invention has been particularly described with reference to the various figures and embodiments, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the invention.

There may be many other ways to implement the invention. Various functions and elements described herein may be partitioned differently from those shown without departing from the spirit and scope of the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other embodiments. Thus, many changes and modifications may be made to the invention, by one having ordinary skill in the art, without departing from the spirit and scope of the invention.

A reference to an element in the singular is not intended to mean "one and only one" unless specifically stated, but rather "one or more." The term "some" refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the invention, and are not referred to in connection with the interpretation of the description of the invention. All structural and functional equivalents to the elements of the various embodiments of the invention described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art

are expressly incorporated herein by reference and intended to be encompassed by the invention. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.

What is claimed is:

1. A method for forming a write structure on a multi-layer structure comprising a substrate and an insulator layer on the substrate, the method comprising:

forming a hard mask layer over the insulator layer;

performing a first patterning process to form a pole and yoke opening in the hard mask layer;

performing a second patterning process comprising forming a photoresist pattern on the hard mask layer, the photoresist pattern exposing the rounded corners of the pole and yoke opening in the hard mask layer, and removing a portion of the hard mask layer exposed by the photoresist pattern to remove the rounded corners of the pole and yoke opening in the hard mask layer;

removing a portion of the insulator layer corresponding to the pole and yoke opening in the hard mask layer to form a trench in the insulator layer; and

filling the trench with a magnetic material.

2. The method of claim 1, wherein the step of removing the portion of the insulator layer comprises:

performing reactive ion etching on the portion of the insulator layer corresponding to the pole and yoke opening in the hard mask layer.

3. The method of claim 1, wherein the step of removing the portion of the insulator layer corresponding to the pole and yoke opening in the hard mask layer comprises:

8

forming a second hard mask layer over the insulator layer prior to forming the first hard mask layer, wherein the first hard mask layer is formed over the second hard mask layer;

transferring the pole and yoke opening from the first hard mask layer to the second hard mask layer; and

removing a portion of the insulator layer exposed by the pole and yoke opening in the second hard mask layer.

4. The method of claim 3, wherein the step of performing the first patterning process comprises:

forming a photoresist pattern on the second hard mask layer prior to forming the first hard mask layer, wherein the first hard mask layer is formed over the second hard mask layer and the photoresist pattern;

removing a portion of the first hard mask layer along one or more sides of the photoresist pattern; and

lifting off the photoresist pattern from the second hard mask layer.

5. The method of claim 4, wherein the step of performing the second patterning process comprises:

forming a second photoresist pattern on the first hard mask layer, the second photoresist pattern exposing the rounded corners of the pole and yoke opening in the first hard mask layer; and

removing a portion of the first hard mask exposed by the second photoresist to the remove rounded corners of the pole and yoke opening in the first hard mask layer.

6. The method of claim **1**, wherein the hard mask layer comprises a hard mask material selected from a group consisting of tantalum and ruthenium.

7. The method of claim 1, wherein the insulator layer comprises alumina.

* * * * *